INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES

INTELIGENCIA ARTIFICIAL. INVESTIGACIONES, APLICACIONES Y AVANCES

ORTEGA CANDEL, JOSÉ MANUEL

24,95 €
IVA incluido
En stock
Editorial:
ANAYA MULTIMEDIA
Año de edición:
2025
Materia
Tecnología e informática
ISBN:
978-84-415-5097-1
Páginas:
288
Encuadernación:
RÚSTICA
Colección:
TÍTULOS ESPECIALES
24,95 €
IVA incluido
En stock
Añadir a favoritos

1. Introducción a la Inteligencia Artificial (AI)
1.1 Aprendizaje automático (machine learning)
1.1.1. Etapas de machine learning
1.1.2. Tipos de machine learning
1.1.3. Aprendizaje supervisado
1.1.4. Aprendizaje no supervisado
1.2. Aprendizaje profundo (deep learning)
1.2.1 Cómo trabaja el deep learning
1.2.2. Capa de entrada (input layer)
1.2.3. Capa oculta (hidden layer)
1.2.4. Funciones de activación
1.2.5. Capa de salida (output layer)
1.2.6. Niveles crecientes de abstracción
1.3. Diferencias entre inteligencia artificial, deep learning y machine learning
1.4. Importancia del deep learning en la actualidad
1.5. Capas ocultas en aprendizaje profundo
1.5.1. Problema de desvanecimiento del gradiente
1.5.2. Optimización avanzada
1.5.3. Overfitting y underfitting
1.5.4. Técnicas de regularización
1.6. Limitaciones del deep learning
1.6.1. Problemas derivados del sobreaprendizaje
1.6.2. Uso de la capa de dropout
1.6.3. Las redes neuronales como cajas negras
1.6.4. Relación entre la regresión logística y las redes neuronales

2. Introducción a las redes neuronales
2.1. Historia y evolución de las redes neuronales
2.2. Contexto histórico
2.3. Redes neuronales artificiales en deep learning
2.4. Aplicaciones de las redes neuronales
2.4.1. Reconocimiento de patrones
2.4.2. Procesamiento de lenguaje natural
2.4.3. Visión por computadora
2.4.4. Predicción y toma de decisiones
2.5. Ventajas del deep learning
2.6. Importancia de las redes neuronales en la inteligencia artificial
2.7. Componentes de una red neuronal
2.7.1. El peso adaptativo de las redes neuronales
2.7.2. Procesado de información de una neurona artificial
2.7.3. Las funciones de activación de las redes neuronales
2.8. Algoritmos más utilizados para implementar redes neuronales
2.9. Las funciones de coste de las redes neuronales
2.9.1. Función de pérdida
2.9.2. Ponderaciones y sesgos
2.9.3. Retropropagación y descenso gradual
2.10. Clasificación de las redes neuronales
2.10.1 Clasificación por el número de capas
2.10.2. Clasificación por los tipos de conexiones
2.10.3. Clasificación por el grado de conexiones
2.10.4. Clasificación por el tipo de arquitectura o tecnología
2.11. Perceptrón simple
2.12. Perceptrón multicapa (MLP)

3. Redes neuronales recurrentes (RNN)
3.1. Introducción
3.1.1 Concepto de recurrencia y celda de una RNN
3.2. Arquitectura de una RNN
3.2.1. Algoritmo de retropropagación a través del tiempo (BPTT)
3.3. Casos de uso y aplicaciones de redes neuronales recurrentes
3.4. Arquitecturas RNN especializadas
3.5. Long Short-Term Memory (LSTM)
3.5.1. Bidirectional LSTM
3.6. Gated Recurrent Unit (GRU)

4. Redes neuronales convolucionales (CNN)
4.1. Introducción a las CNN
4.2. Origen de las redes neuronales convolucionales
4.3. Arquitectura de las redes neuronales convolucionales
4.3.1. Capa convolucional
4.3.2. Capa de reducción (pooling)
4.3.3. Capa densa o fully connected
4.4. Tipos de arquitecturas CNN
4.4.1. GoogleNet (Inception)
4.4.2. AlexNet
4.4.3. Redes residuales (ResNet)
4.4.4. VGG
4.5. Redes convolucionales bidimensionales (2D CNN)
4.6. Ventajas de las redes convolucionales

5. Transfer learning y modelos pre entrenados
5.1. Introducción al transfer learning
5.2. Deep learning vs transfer learning
5.3. Técnicas de transfer learning
5.3.1. Aprendizaje por transferencia inductiva
5.3.2. Aprendizaje por transferencia no supervisado
5.3.3. Aprendizaje por transferencia transductiva
5.3.4. Transfer learning para la resolución de problemas de deep learning
5.4. Modelos pre entrenados de transfer learning
5.4.1. Modelos ImageNet
5.4.2. Modelos NLP
5.4.3. Modelos generativos
5.5. Librerías de modelos pre entrenados

6. Redes neuronales generativas adversarias o antagónicas (GAN)
6.1. Introducción a las redes GAN
6.2. Generación de imágenes en redes GAN
6.2.1. El papel de la red discriminadora
6.3. Características de las redes GAN
6.3.1. Entrenamiento de las redes GAN
6.3.2. Dificultades del entrenamiento de las redes GAN
6.4. Ventajas y desventajas de usar una red GAN
6.5. Aplicaciones de las redes GAN
6.6. Herramientas de IA para la creación y manipulación de imágenes
6.7. El futuro de las redes adversarias generativas

7. Inteligencia Artificial Generativa
7.1. Introducción
7.2. Definición de IA generativa
7.3. Historia y evolución de la IA hasta llegar a la IA generativa
7.4. El paso de la IA tradicional a la IA generativa
7.5. Modelos de lenguaje de gran escala (LLM)
7.6. Llama 2
7.6.1. Proceso de entrenamiento en Llama 2
7.7. Phi-2
7.7.1. Arquitectura de Phi-2
7.8. Gemini
7.9. Algoritmia relevante en el ámbito de la IA generativa

8. Procesamiento de lenguaje natural (PLN)
8.1. Introducción al procesamiento de lenguaje natural
8.2. La evolución del procesamiento del lenguaje natural
8.3. Modelos del lenguaje
8.3.1. Aplicaciones de modelos de lenguaje
8.3.2. Falcon 180B
8.3.3. OPT-175B
8.3.4. Otros modelos relevantes
8.4. Deep learning en el procesamiento de lenguaje natural
8.4.1. Modelo de embeddings
8.4.2. Word embeddings (incrustaciones de palabras)
8.4.3. Word2vec
8.4.4. GloVe (Global Vectors)
8.4.5. FastText
8.4.6. Tokenización y preprocesado
8.4.7. Tokenización a nivel de carácter
8.4.8. Tokenización a nivel de palabra
8.4.9. Tokenización a nivel de subpalabra
8.4.10. GPT Tokenizer
8.4.11. ELMo
8.4.12. El modelo transformer
8.5. Ejemplos de aplicaciones con OpenAI
8.5.1. Whisper

9. Transformers
9.1. El origen de los transformers
9.2. Versatilidad de los transformers en PLN
9.3. Mecanismo de atención en transformers
9.4. Arquitectura de un transformer
9.5. Estructura encoder-decoder y tipos de transformers
9.5.1. Self attention
9.6. Partes de un transformer
9.6.1. Embeddings
9.6.2. Codificación posicional
9.7. Mecanismo de atención en la arquitectura de transformers
9.7.1. Autoatención por multicabeza
9.7.2 Matriz de atención
9.8. Casos de uso de transformers
9.9. Transformers en procesamiento del lenguaje natural
9.9.1. Bard
9.9.2. LaMDA (Language Model for Dialogue Applications)
9.9.3. PaLM (Pathways Language Model)
9.10. Implementación de la capa transformer en Python
9.11. Hugging Face Transformers
9.12. Vision transformer (ViT)
9.12.1. Diferencias entre vision transformers y redes convolucionales
9.13. Líneas de investigación abiertas con transformers
9.13.1. Restormer
9.13.2. Swin transformer
9.13.3. ConvNeXt
9.14. Conclusiones

10. Autoencoders
10.1. Introducción
10.2. Casos de uso de autoencoders
10.3. Arquitectura de los autoencoders
10.4. Fundamentos de los autoencoders
10.5. Tipos de autoencoders
10.6. Tipos de aplicaciones con autoencoders

11. Glosario de términos

El campo de la inteligencia artificial (IA) ha experimentado un crecimiento explosivo en las últimas décadas, transformando a fondo numerosos aspectos de nuestra sociedad y tecnología. Desde los sistemas de recomendación en plataformas de entretenimiento hasta los vehículos autónomos y la medicina asistida por IA, los avances en este campo han revolucionado la forma en que interactuamos con la tecnología y abordamos los desafíos del mundo moderno.Inteligencia artificial. Investigaciones, aplicaciones y avances es un libro que proporciona una visión integral de los últimos desarrollos en IA, desde sus fundamentos teóricos hasta sus aplicaciones prácticas y las tendencias emergentes en este campo.

Artículos relacionados

  • INTELIGENCIA ARTIFICIAL Y ADMINISTRACION PUBLICA
    RAMIO, CARLES
    Las potencialidades transformadoras de la inteligencia artificial y de la robótica son enormes. También tendrán su impacto en las administraciones públicas. Este libro no versa sobre la tecnología, sino sobre cómo esta puede transformar la Administración pública, por lo que se trata de determinar qué problemas y oportunidades surgirán de la implantación de estas innovaciones en...
    En stock

    17,50 €

  • INTERNET PARA LA GENTE
    TARNOFF, BEN
    Por qué deberíamos estar todos en pie de guerra para salvar nuestra independencia digital y nuestro pensamiento crítico. «Un libro extraordinario y urgente».Naomi KleinLa crítica ha dicho:«Ben Tarnoff es el mejor tipo de visionario: informado, práctico y comprometido al máximo con la transformación de un statu quo abusivo y corrupto. Tenemos la enorme fortuna de contar con su ...
    En stock

    21,90 €

  • 100 MANDACIERTOS PARA DOMINAR LA TECNOLOGÍA (Y NO ELLA A TI)
    SÁNCHEZ GUTIÉRREZ, LAURA
    100 trucos e ideas geniales que te ayudarán a sacar todo el partido a la tecnología sin complicarte la vida (¡tengas la edad que tengas!) - Android - iOs - Smartwatch - Apps y webs increíbles - Trucos de fotografía - IA para todos los públicos - Gadgets caseros - Edición de vídeos - Tips para PC ¡Y muchísimas cosas más! En este libro encontrarás muchísimos trucos del almendruco...
    En stock

    20,90 €

  • TECNOLOGÍAS DIGITALES APLICADAS A LA ENSEÑANZA DE LAS LENGUAS Y A LA LINGÜÍSTICA
    HIDALGO DOWNING, RAQUEL
    La enseñanza de las lenguas y la lingüística no ha sido ajena a la revolución tecnológica de las últimas décadas, en la que el desarrollo y continuo auge de la inteligencia artificial generativa es solo el último eslabón de una cadena en la que con seguridad se enlazarán nuevas piezas. Este libro analiza, desde la experiencia docente de sus autores y, por lo tanto, con los pie...
    En stock

    19,00 €

  • INTELIGENCIA ARTIFICIAL APLICADA AL COMERCIO
    CORONADO GARCÍA, BEATRIZ
    Este manual ofrece una visión completa de cómo aplicar la Inteligencia Artificial (IA) en ventas, personalización, atención al cliente y gestión de inventarios en empresas. Explora cómo la IA puede optimizar operaciones, reducir costes y mejorar la satisfacción del cliente mediante el análisis de grandes volúmenes de datos y la automatización. En ventas, se destaca el uso de IA...
    En stock

    19,90 €

  • EXCEL PARA EL ANÁLISIS DE DATOS
    MAYO, FERNANDO
    En el vertiginoso mundo empresarial actual, donde la inteligencia artificial y la inteligencia empresarial parecen marcar el compás, Excel sigue reinando como la herramienta más utilizada. En este libro se desentraña el porqué de esta preponderancia, se profundiza en sus ventajas y limitaciones, y se explica el modo en que se ha erigido como el aliado omnipresente en las tareas...
    En stock

    29,95 €

Otros libros del autor

  • INGENIERÍA DE DATOS. DISEÑO, IMPLEMENTACIÓN Y OPTIMIZACIÓN DE FLUJOS DE DATOS EN
    ORTEGA CANDEL, JOSÉ MANUEL
    En stock

    29,90 €

  • BIG DATA, MACHINE LEARNING Y DATA SCIENCE EN PYTHON
    ORTEGA CANDEL, JOSÉ MANUEL
    El libro está dirigido aquellos lectores que estén trabajando en proyecto relacionados con big data y busquen identificar las características de una solución de Big Data, los datos asociados a estas soluciones, la infraestructura requerida, y las técnicas de procesamiento de esos datos. Entre los principales objetivos podemos destacar: ? Introducir los conceptos de ciencias de...
    Disponible en 10 días

    32,90 €

  • HACKING ÉTICO CON HERRAMIENTAS PHYTON
    ORTEGA CANDEL, JOSÉ MANUEL
    "En los últimos años, Python se ha convertido en un lenguaje muy adoptado por la industria de la seguridad informática, debido a su simpleza, practicidad, además de ser un lenguaje tanto interpretado como de scripting. Su integración con multitud de libr ...
    Disponible en 10 días

    25,90 €

  • SEGURIDAD EN APLICACIONES WEB JAVA
    ORTEGA CANDEL, JOSÉ MANUEL
    Disponible en 10 días

    29,90 €